Course	Credit	Conventional and Denowable	Contact	Total
Code	Hours	Conventional and Renewable	Hrs/Week	Contact Hrs
TEE 803	(Th-Pr)	energy Power Plants	(Th-Pr)	(Th-Pr)
	3-0	(core)	3-0	45-0

Course Outline:

Steam power plants Gas turbine and combined-cycle power plants Diesel- and gas-engine power plants Nuclear power generation Eligibility Criteria: CHP systems Solar thermal power plants

Geothermal power plants

Eligibility Criteria

B.E in Mech., Elect (Power), Chemical, Industrial, Process

B.S (4-years) Or M.Sc. degrees in Physics

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	POWERPLANT	M. M. El-Wakil	WM	Text Book
	TECHNOLOGY			
2.	Thermal Power Plant	De Souza, Gilberto	SD	Reference
	Performance Analysis	Francisco Martha		
3.	Geothermal Power Plants	Ronald DiPippo,	RD	Reference
4.	Steam Plant Operation	Everett Woodruff, Herbert Lammers	EW	Reference
5.	Power Generation	Paul Breeze	PB	Reference

	Technologies			
6.	Solar Electric Power Generation - Photovoltaic Energy Systems	Krauter, Stefan C. W.	SK	Reference
7	Introduction to Nuclear Engineering	John R. Lamarsj	JL	Reference

Course Objectives:

Understanding of the principles of operation, configuration, characteristics, and key implementation issues of various types of power plant including renewable energy thermal power plants.

Learning outcome:

On successful completion of the module the student will be able to:

- a. Recognize and demonstrate a comprehensive understanding of the fundamentals and laws governing energy conversion
- b. Debate issues related to the performance of conventional powergeneration plants
- c. Propose appropriate technologies for improving energy-utilization efficiency of power-generation plants
- d. Assess the need of a particular industrial/commercial site for a CHP system, identify the appropriate systems and undertake design, sizing and economic analyses
- e. Review critically technologies employed for fuel-cell systems and advances in their applications
- f. Continue to advance their knowledge and assimilate new future technologies.

Topics Covered:

No	Topics	Book	Contact

			Hours
1.	Steam power plants:	WM,	12
	Thermodynamic principles. Fuels. Steam	SD&	
	power generation cycles. Steam Generators,	EW	
	Steam turbines		
	Gas turbine and combined-cycle power plants:		
	Gas turbine engines and performance. Gas		
	turbine cycles. Combined cycle power plants.		
	Diesel- and gas-engine power plants:		
	Diesel engines. Fuels. Emission control. Heat		
	recovery systems.		
2.	Nuclear power generation:	JL,	9
	Basic nuclear physical processes (fission and	WM	
	fusion). Nuclear fuels.		
	Types of reactors. Safety considerations in the		
	nuclear industry. Developments in nuclear		
	fusion.		
	Decommissioning problems of nuclear sites.		
	Nuclear-waste disposal systems.		
3.	CHP systems:	WM	10
	CHP schemes (micro-scale CHP systems, small		
	scale CHP systems, large scale		
	CHP systems including district heating		
	schemes). Application of CHP systems for the		
	provision of heating, cooling, and electric power.		
	Selection criteria of CHP prime-movers.		
	Integration of CHP systems into site services.		
	Feasibility analysis of CHP schemes using		
	spreadsheets/software tools.		
	• Case study (site appraisal for CHP scheme and		
	evaluation of economic and environmental		
	viability).		

4	Solar thermal Power Generation	SK	9
	Selection of Site and Data Requirements		
	Solar radiations and their conversions		
	 Modeling of System Components 		
	Validation of Model and System Design		
	Thermal Energy storage for solar thermal power		
	generation systems		
	Economic consideration		
5	Geothermal power generations Systems	RD	5